CERES CLOUD PROPERTY RETRIEVALS

Patrick Minnis

NASA Langley Research Center

p.minnis@larc.nasa.gov

Sunny Sun-Mack
SAIC

s.sun-mack@larc.nasa.gov

http://lposun.larc.nasa.gov/~cwg/

January 29, 2003

NASA Clouds and Earth's Radiant Energy System (CERES) Cloud Products

Monitor Earth's radiation budget (ERB) at a higher accuracy with instruments on *TRMM*, *Terra*, & *Aqua*

- Relate cloud properties to the radiation budget
- Develop new bidirectional reflectance models for interpreting broadband radiance measurements
- Derive surface and atmospheric radiation budgets & the top-of-atmosphere ERB
- Provide data to initialize & validate climate & weather prediction models

BASIC APPROACH

CERES Matched Cloud-Radiation Data

- Determine cloud properties from imager data (2 km)
- Convolve & average imager cloud properties into CERES footprints (10 - 50 km)

METHODOLOGY

- Classify each imager pixel as clear or cloudy
 - determine the confidence of the classification (good, weak,glint, haze)
- Retrieve cloud micro- and macrophysical cloud properties
 - reclassify if no retrievals result (~4% of cloudy pixels)
- Combine imager cloud properties broadband fluxes from satelliteobserved radiances
 - convolve imager pixel results into CERES sensor footprint
 - select anisotropic correction models
 - compute shortwave & longwave fluxes

DATA

- TRMM VIRS 2-km pixels
 - 2-30 overpasses per month at all times of daylight
- MODIS 1-km pixels (sampled to 2 km)
 Domain: Global
 - 2 overpass/day (night-day), more over poles
- Input
- 0.65 & 1.6 reflectances
- 3.7, 10.8, and 12- μ m brightness temperatures
- ECMWF T(z), q(z), $O_3(z)$ each 6 hr (3-hr skin temperatures)
- Elevation, water %, ice/snow, IGBP type
- Results
 - averages on 1.0° grid & individual CERES footprints (~ 10 km)
 - some pixel-level output also available

Domain: 37°S - 37°N

CERES CLOUD PROPERTIES

1 SSF PIXEL w/CERES FLUXES (SSF = Single Scanner Footprint)

AMOUNT EFFECTIVE RADIATING TEMP Tc **EFFECTIVE HEIGHT, PRESSURE** Zc, pc **TOP PRESSURE** p_t **THICKNESS EMISSIVITY PHASE (0 - 2)** WATER DROPLET EFFECTIVE RADIUS re **OPTICAL DEPTH LIQUID WATER PATH LWP** ICE EFFECTIVE DIAMETER De **ICE WATER PATH IWP**

OTHER DERIVED PARAMETERS FROM CLEAR PIXELS

• CLEAR-SKY ALBEDOS (0.6 & 1.6 μ m)

• CLEAR-SKY TEMPERATURES (3.7, 11, & 12 μ m)

SKIN TEMPERATURE

AEROSOL OPTICAL THICKNESS (ocean only)

• SURFACE EMISSIVITY (3.7, 8.5, 11, & 12 μ m)

CALIBRATION

- Extensive ongoing intercalibration effort
 - intercalibrate VIRS & MODIS;
 - determine stability by comparing imagers to CERES
 - examine all channels of interest (0.6, 0.86, 1.6, 3.7-3.9, 10.8, 12 μ m) theoretically account for expected inter-satellite spectral differences
 - use statistics to reduce noise and angular/time matching errors
- Intercalibrate other satellites for CERES & other projects
 - link all considered satellites to references (VIRS or MODIS)
 - GOES-7, 8, 9, 10, 11, 12 (1993 present)
 - AVHRR: NOAA-9,10, 11, 12, 14, 15, 16, 17 (1985 present)
 - GMS-5, Meteosat-7

USE CERES BROADBAND TO MONITOR TRENDS IN IMAGER CHANNELS

Compute slope for each day

200 N = 15801 200 200 300 400 500 600 VIRS 0.63 Radiance (W m² sr¹ μm¹)

Monitor slope variation

USE STABLE IMAGER AS REFERENCE FOR OTHER IMAGERS

VIRS, ASR-2, MODIS have onboard cal for all channels

Compute gain each month

Derive trend in gain, repeat with other reference platform

CALIBRATION STATUS FOR CERES VIRS/MODIS

- 2.2%/yr degradation in VIRS 1.6-µm relative to *Terra* MODIS
- Terra MODIS VIS up to 3% greater at high end, 2% less at low end
 - additional theoretical study needed to warrant changes
 - decreased VIS ocean reflectance model for MODIS
- Spectral differences will introduce some inconsistencies in the VIRS-MODIS results
 - cloud emittance models -> ~ 0.5 K difference
 - surface emissivity maps may need some tweaking
- Trend analyses will continue & include CERES vs MODIS

Aqua MODIS intercalibrations to come

CLOUD MASK

- To detect clouds, the radiances for cloud-free (clear) scene must be known
- Determine clear-sky albedos and surface emissivities after initial processing of data
 - determine means for each surface type to fill in missing areas
- Use ECMWF skin temperatures & profiles to estimate clear-sky brightness temperatures
- Use bidirectional reflectance models to estimate clear-sky reflectance for each pixel
- Estimate thresholds based on uncertainties in models & spatial/temporal variability of the clear radiances

CLEAR-SKY RADIANCE CHARACTERIZATION

- Predict radiance a given satellite sensor would measure for each channel if no clouds are present
- Estimate uncertainty based on spatial & temporal variability
 & angular model errors
- Develop set of spectral thresholds for each channel
 - Solar, uses reflectance, □
 - IR, use temperature, T

brightness temperature difference, BTD = $T_{\Box 1}$ - $T_{\Box 2}$ typically, BTD(3.7-11) or BTD(11-12)

CLEAR-SKY REFLECTANCE, SOLAR

- Estimate overhead-sun albedo, $\Box_o = \Box(\mu_o = 1)$ derived empirically with initial runs using ISCCP AVHRR DX then updated for each month using VIRS, then Terra MODIS
- Estimate albedo at given local time, $[(\mu_o)] = [(\mu_o)] = [(\mu_o)]$ directional reflectance model $[(\mu_o)]$ derived for each IGBP type using VIRS
- Estimate reflectance for given viewing angles, $\Box(\mu_o, \mu, \Box) = \Box(\mu_o) \Box(\mu_o, \mu, \Box)$ bidirectional reflectance (BRDF) model \Box selected for each IGBP type from Kriebel (1978), Minnis & Harrison (1984), Suttles et al. (1988)
- Add uncertainty to set reflectance threshold, $\square_T(\mu_o, \mu, \square) = \square + \square \square(\mu_o, \mu, \square)$

MODIS-BASED OVERHEAD-SUN VIS ALBEDO MAP, 12/1/00

PREDICTED CLEAR-SKY VIS ALBEDO 1700 UTC,12/21/00

PREDICTED CLEAR-SKY & OBSERVED VIS REFLECTANCE & CLOUD MASK 1700 UTC,12/21/00

CLEAR-SKY TEMPERATURE, INFRARED

Estimate surface emissivity, □_x(x,y)

derived empirically with initial runs using ISCCP AVHRR DX then updated using VIRS, then Terra MODIS; water & snow theoretical

- Estimate radiance leaving the surface, $L_s = \Box_s B(T_{skin}) + (1-\Box_s) L_{ad}$ $L_{ad} = downwelling \ atmo \ radiation, \ T_{skin} = skin \ temperature \ from \ model \ / \ obs$
- Estimate TOA brightness temperature, $B(T_{cs}) = (1-\Box_a)L_s + \Box_a L_{au}$ $L_{au} = upwelling \ atmo \ radiation, \ \Box_a = effective \ emissivity \ of \ atmo$ $layer \ absorption \ emission \ computed \ using \ T/RH \ profile, \ correlated \ k-dist$
- Add uncertainty to set T or BTD thresholds, $T_T(\mu) = T_{cs}(\mu) + \Box T(\mu)$
 - reflected solar component included in 3.7-4.0 μm estimate

Surface emissivity from *Terra* MODIS, April 2001 $3.7 \mu m$

Unfiltered

Filtered & IGBP filled

Surface emissivity from *Terra* MODIS, April 2001, 11 μ m

Filtered & IGBP filled

Surface emissivity from *Terra* MODIS, April 2001, 8.5 μ m

Filtered & IGBP filled

PREDICTED CLEAR-SKY & OBSERVED IR TEMPERATURE 1700 UTC,12/21/00

PREDICTED CLEAR-SKY & OBSERVED BTD (3.7 - 11) 1700 UTC,12/21/00

CLOUD MASK

Classify each imager pixel as cloud / clear / bad using multiple cascading thresholds + Welch algo

DAYTIME & POLAR: SZA < 82°, 0.6, 1.6, 3.8, 11, 12 μ m

NIGHTTIME & POLAR: 3.8, 11, 12 μ m

STANDARD DAYTIME MASK ALGORITHM

ANCLILLARY DATA USED IN CLOUD MASK & RETRIEVALS

Snow map used as a guide, snow is determined independently if clear

STANDARD NIGHTTIME MASK ALGORITHM

CERES CLOUD MASK & BTD(3.7 - 11) REFLECTANCE 0400 UTC,12/01/00

CLOUD RETRIEVAL METHODOLOGY

• Compute ice & water solution, select most likely based on model fits, temperature, LBTM classification, 1.6- μ m reflectance

No retrievals: reclassify as clear or status quo, 3-4%

RETRIEVAL METHODS

DAY: Visible Infrared Solar-Infrared Split-Window Technique (VISST) see Minnis et al. (1995, 1998)

NIGHT: Solar-infrared Infrared Split-Window Technique (SIST)

see Minnis et al. (1995, 1998)

SNOW (DAY): Solar-Infrared Infrared Near-Infrared Technique (SINT)

MODIS only see Platnick (JGR, 2001)

CERES CLOUD PROPERTIES

1 SSF PIXEL w/CERES FLUXES

AMOUNT

EFFECTIVE RADIATING TEMP Tc

EFFECTIVE HEIGHT, PRESSURE Zc, pc

TOP PRESSURE p_t

THICKNESS

EMISSIVITY

PHASE (0 - 2)

WATER DROPLET EFFECTIVE RADIUS re

OPTICAL DEPTH

LIQUID WATER PATH LWP

ICE EFFECTIVE DIAMETER De

ICE WATER PATH IWP

CERES CLOUD MACROPHYSICAL PROPERTIES 1700 UTC, 12/21/00

CERES CLOUD MICROPHYSICAL PROPERTIES 1700 UTC, 12/21/00

CERES Cloud Microphysical Properties

Eastern China

0002 UTC, 2/03/02

R: 0.6 um G: 1.6 um B: 11 um

Terra MODIS

CERES Cloud Macrophysical Properties

Eastern China

0002 UTC, 2/03/02

R: 0.6 um G: 1.6 um B: 11 um

Terra MODIS

Comparison of Optical Depths (OD) from VISST & SINT, Terra MODIS

Northern Alaska

March 3, 2001 2100 UTC

Visible channel overestimates OD over snow & ice

1.6-μm yields more realistic value for OD

CLOUD MASK CLEAR STATISTICS, DECEMBER 2000

Day: csz > 0.1

	Ocean	Land	Desert	Total
Clr Good	0.920	0.759	0.971	0.853
CIr Weak	0.009	0.010	0.015	0.009
CIr Smoke	0.001	0.000	0.000	0.001
CIr Fire	0.000	0.000	0.000	0.000
CIr Snow	0.017	0.228	0.009	0.108
CIr Glint	0.052	0.001	0.000	0.028
CIr Shadow	0.000	0.001	0.005	0.001
CIr Aerosol	0.002	0.000	0.000	0.001
Total	1.000	1.000	1.000	1.000

Night: csz < 0.1

	Ocean	Land	Desert	Total
CIr Good	0.704	0.661	0.717	0.687
CIr Weak	0.076	0.032	0.211	0.062
CIr Snow	0.220	0.307	0.072	0.251
Total	1.000	1.000	1.000	1.000

CLOUD MASK CLOUD STATISTICS, DECEMBER 2000

Day: csz > 0.1

	Ocean	Land	Desert	Total
Cld Good	0.940	0.855	0.662	0.912
Cld Weak	0.038	0.042	0.088	0.047
Cld Glint	0.009	0.001	0.000	0.007
Cld N/R	0.030	0.068	0.250	0.042
Total	1.000	1.000	1.000	1.000

Night: csz < 0.1

	Ocean	Land	Desert	Total
Cld Good	0.909	0.906	0.909	0.908
Cld Weak	0.084	0.084	0.038	0.084
Cld N/R	0.007	0.009	0.053	0.014
Total	1.000	1.000	1.000	1.000

MEAN CLOUD COVER, MODIS, June 2001 Day

MEAN CLOUD COVER, MODIS, DEC 2000

DAYTIME

MEAN EFFECTIVE CLOUD HEIGHT, MODIS, DEC 2000 DAYTIME

MEAN WATER CLOUD OPTICAL DEPTH, MODIS, DEC 2000, DAY

MEAN EFFECTIVE DROPLET RADIUS, MODIS, DEC 2000

Optical Depth Vs. Latitude

SEASONAL VARIATION OF EFFECTIVE DROPLET RADIUS

VIRS, 1998 - 2001

Range in southern ocean is $2 - 4 \mu m$ Range over tropical land $1 - 2 \mu m$ 1 - 2 µm elsewhere

MEAN CLOUD COVER, MODIS, June 2001 night

EFFECTIVE CLOUD TEMPERATURE, MODIS, DEC 2000

MEAN EFFECTIVE CLOUD HEIGHT, MODIS, DEC 2000 NIGHT

MEAN EFFECTIVE ICE CRYSTAL DIAMETER, MODIS, DEC 2000 DAYTIME

MEAN CLOUD LIQUID WATER PATH, MODIS DEC 2000

Daytime

g/m^2

SEASONAL VARIATION OF EFFECTIVE ICE CRYSTAL DIAMETER

VIRS, 1998 - 2001

MEAN WATER PATH, MODIS, DEC 2000, DAY

VALIDATION (COMPARISONS)

- with climatological datasets (surface, ISCCP)
 - cloud amount, optical depth
- with surface-based retrievals
 - LWP, r_e, Z_c, T_c, *□*from radiometers, radar, lidar
- with aircraft measurements
 - in situ microphysics
 - remotely sensed macrophysics, radiation
- with other satellite measurements
 - different type of retrievals (e.g., LWP from μ -wave)
 - dual angle retrievals (phase function, phase, []
 - intersatellite consistency
- with theoretical calculations (consistency)
 - TOA fluxes (e.g., SARB results from Charlock)
 - angular variations (e.g., ADMs from Loeb)

COMPARISON OF TOTAL CLOUD AMOUNTS

SURFACE (1971-1996) VIRS (1998) ISCCP (1984 - 1991)

COMPARISON OF JUNE CLOUD AMOUNTS

ISCCP: lower resolution => more cloud cover?

SURFACE-OBSERVED HIGH CLOUD AMOUNTS (JUNE 1971-95) VS CERES-MODIS ICE CLOUD COVER (JUNE 2001)

Agreement in low latitudes consistent with VIRS

- discrepancy in midlatitudes due to definition of high?

MONTHLY MEAN CLOUD LWP FROM VIRS & TMI OVER OCEANS

overcast, water cloud only, Tc > 273 K, SZA < 78°, no sunglint

TMI - TRMM Microwave Imager, LWP from method of *Lin et al., JGR, 1998*

October 31, 1999 17:00 & 17:02 UTC

DUAL-ANGLE RETRIEVAL TO TEST PHASE FUNCTION

For a pair of reflectances, the matched observations should coincide with a particular reflectance-pair line for a given phase function

Chepfer et al. (JGR, 2002) found that CERES ice phase function explains observed reflectances as often or more so as any others tested.

Validation of Cloud Height over ARM SGP, VIRS 1998

Nighttime VIRS and Surface Comparison at ARM SGP Site (τ <5)

Nighttime thin: 4 Ci too high, 1 too low; best agreement

Dong et al. (submitted JAS 2002)

Validation of Thin (□< 5) Cloud Height over ARM SGP, MODIS 2001

Nearly all thin cloud heights are within boundaries of cloud:

Clouds higher at night due to greater errors in skin temperature

Boundary-layer cloud heights sometimes too high due to inversions

Implies cirrus optical depths are quite reasonable

Validation of CERES Cloud Optical Depth (Stratus)

ARM SGP, VIRS 1998; MODIS 2001

Excellent correspondence between CERES and surface-derived optical depths over ARM SGP site

Validation of CERES Cloud Droplet Size (Stratus)

ARM SGP, VIRS 1998; MODIS 2001

CERES average droplet sizes within \pm 1 μ m of surface-based values over ARM SGP site

Validation of CERES Cloud Droplet Size (Stratus) ARM SGP, VIRS 1998; MODIS 2001

CERES LWP slightly greater than surface-based values over ARM SGP site

COMPARISON OF CERES VIRS & SURFACE-DERIVED CLOUD PROPERTIES ARM SGP JAN - AUG 1998 DAYTIME

Parameter	VIRS-sfc	std dev	<u>SD(%)</u>	<u>N</u>
Thin Tc vs mean	-11.8 K	11.7 K	-	18
Thick Tc vs mean	-6.8 K	8.2 K	-	41
Thin Zc vs. mean	-1.1 km	1.7 km	-	18
Thin Zc vs. top	-2.1 km	2.0 km	-	18
Thick Zc vs. mean	0.4 km	1.3 km	-	41
Thick Zc vs. top	-0.4 km	1.6 km	-	41
Stratus []	-1.5	6.2	21	25
Stratus re (μm)	0.7	1.8 □	20	25
LWP (gm ⁻²)	-18	41	35	25
Cirrus []	0.7	1.3	38	7
Cirrus De (µm)	0.5	17.0	72	7
IWP (gm ⁻²)	4.3	18.3	49	7

COMPARISON OF CERES VIRS & SURFACE-DERIVED CLOUD PROPERTIES ARM SGP JAN - AUG 1998 NIGHTTIME

Parameter	VIRS-sfc	std dev	SD (%)	<u>N</u>
Thin Tc vs mean	-1.6 K	9.5 K	-	49
Thick Tc vs mean	-6.4 K	7.3 K	-	31
Thin Zc vs. mean	0.7 km	1.4 km	-	49
Thin Zc vs. top	-0.5 km	1.5 km	-	31
Thick Zc vs. mean	1.6 km	1.1 km	-	49
Thick Zc vs. top	-0.4 km	1.6 km	-	49
Cirrus 🗌	0.6	1.1	78	16
Cirrus De (µm)	-16.8	17.0	32	16
IWP (gm ⁻²)	2.0	27.5	97	16

CONSISTENCY WITH RADIATIVE TRANSFER CALCULATIONS

- MEASURE BROADBAND RADIANCE AT ONE ANGLE & CONVERT TO FLUX
- DETERMINE CLOUD PROPERTIES FROM ANOTHER ANGLE & COMPUTE FLUX USING CLOUD PROPERTIES AS INPUT TO RADIATIVE TRANSFER MODEL

(Fu and Liou, 1993)

- DIFFERENCE IS MEASURE OF UNCERTAINTY IN PHASE FUNCTION USED TO RETRIEVE CLOUD PROPERTIES, CLOUD DETECTION, BIDIRECTIONAL REFLECTANCE MODEL, SURFACE & ATMOSPHERIC PROPERTIES
- UNCERTAINTY TELLS US HOW ACCURATE A CLIMATE OR WEATHER MODEL SHOULD COMPUTE THE INSTANTANEOUS FLUX IF THE CLOUD PROPERTIES ARE PROPERLY COMPUTED IN THE MODEL

COMPARISON OF OBSERVED & COMPUTED SW & LW FLUXES ALL SCENE TYPES, TRMM VIRS/CERES, APRIL 18, 1998

 \square SW = 5.8 \pm 28 Wm⁻² (14%)

 $\Box LW = 0.7 \pm 8 \text{ Wm}^{-2} (3\%)$

COMPARISON OF OBSERVED & COMPUTED SW & LW FLUXES ICE CLOUDS ONLY TRMM VIRS/CERES, APRIL 18, 1998

 \square SW = 4.1 \pm 36 Wm⁻² (10%)

 \square SW = 1.6 \pm 11 Wm⁻² (6%)

CERES-DERIVED CLOUD PROPERTIES YIELD EXCELLENT AGREEMENT BETWEEN FLUX OBSERVATIONS & RADIATIVE TRANSFER MODELS

Scatter Plots for MODIS and VIRS Matchup

SUMMARY OF ZONAL DIFFERENCES, JUNE 2001

Edition 1a

	<u>ocean</u>	<u>land</u>
Cld amt	-0.028	-0.005
Ice height (km)	0.4	0.3
Water height (km)	0.0	-0.2
Ice tau	2.8	-2.0 (<u>+</u> 5.5)
Water tau	0.1 (<u>+</u> 1.5)	0.4 (<u>+</u> 2.8)
r _e (µm)	-0.7 (<u>+</u> 0.9)	-0.5 (<u>+</u> 0.6)
D _e (μ m)	0.9 (<u>+</u> 2.2)	-5.1 (<u>+</u> 2.7)
LWP (gm ⁻²)	2.1	13.7 (SH sampling)
IWP (gm ⁻²)	17, 7%	-23 , <i>8%</i>

SUMMARY

- Cloud amount: VIRS detects more cloud cover
 - orbit times (MODIS designed for clear sky)
 - resolution differences, slight mask differences
- Optical depth: VIRS has variable agreement with MODIS
 - MODIS slightly greater on average (calibration, resolution), < 10% mean diff
- Effective size: VIRS generally larger than MODIS (ice over land greatest)
 - 0.5K difference in 3.7- μ m cal => 0.5 μ m \Box r_e (< 10% bias)
 - Need updated 3.7-µm emissivity maps for thin clouds
- Water path: Mixed results, < 10% difference on average, sampling differences
- Heights: Small differences on average, -0.2 km to 0.4 km (ice)
- Future: examine calibration differences more closely & impact of cloud emittance models & surface emissivity data

Some Caveats!

- Everything is retrieved: ice over water/ mixed phase -> if overlap, large re (1-2 μ m overestimate) or small De (3-5 μ m under) Zc may be underestimated
- IWP overestimated when water cloud under ice
- Don't use cloud properties for thick clouds at night (□> 8)
- Nighttime polar cloud amounts underestimated
 Look for discontinuities at 60° latitude
- Nighttime ice cloud heights somewhat greater (~ 0.5 km for ice)
- Cloud temperature better than height for low clouds over land (missing inversions in profiles)
- Others, see Data Quality Summary

CONCLUDING REMARKS

- CERES archived cloud/radiation data now available
 - VIRS Edition 2 Jan 1998 August 2001, continuing
 CERES fluxes only for Jan-Aug 98, March 2000
 - Terra MODIS Edition 1a: Nov 2000 -
- Validation so far indicates very reasonable values for results
 - Validation continues
 - MODIS & VIRS results very consistent
- Use the dataset you'll like it
 - Read caveats!

SUMMARY OF PRELIMINARY AQUA MODIS ANALYSES

- IMODIS CHANNELS LOOK CLEAN EXCEPT FOR 1.6 μ m
 - SELECT OTHER CHANNEL (2.13 μ m)
 - NEW MODELS DEVELOPED FOR 2.13 $\mu \mathrm{m}$
- ALGORITHMS WORK WITH NO SIGNIFICANT PROBLEMS
 - NEED TO VERIFY CALIBRATIONS
- FIRST BETA RESULTS WILL BE OUT SOON

FUTURE RESEARCH

- multilayer cloud detection & interpretation
 - combined microwave / VISST over ocean
 - secondary processing using info on BTD(11-12), \square D $_{\rm e}/r_{\rm e}$
 - => improved IWP assessment
- improvement of nighttime/twilight everywhere including poles
 - revise thresholds, include VIS in twilight, include 8.5 μ m
 - improve surface emissivities
- continued validation
 - more continuous assessment at ARM sites
 - CALIPSO cloud height/amt global comparison
 - additional multiangle studies including MSG & GOES
 - in situ icing / microphysics field programs
- subpixel cloud amounts
 - combine hi-res VIS with lo-res multispectral (MODIS)

DATA AVAILABILITY

VIRS (Edition 2)

With CERES fluxes: Jan - Aug 1998, March 2000

With no fluxes: *Sept 1998 - July 2001*

Terra MODIS (Edition 1a)

March & April 2000

November, December 2000

January - September 2001

REFERENCES

List of references and pdfs given on the following web page.

http://www-pm.larc.nasa.gov/ceres/ceres-ref.html

Only imagery and summaries are available for CERES at the Cloud Working Web Page

http://lposun.larc.nasa.gov/~cwg/

Digital data avaiable at the LaRC DAAC

http://eosweb.larc.nasa.gov/HPDOCS/

TERRA/AQUA SSF AEROSOLS

LAND: 1 Product

- MODIS (Kaufman et al. JGR 1997)

OCEAN: 2 Products

- MODIS (Tanre et al. JGR 1997)
- VIRS-like (Ignatov Stowe JAM 2000; JAS 2002)

MOTIVATION FOR "VIRS-like"

- 1) LEARN BY COMPARISON
- 2) HEREDITARY: NOAA/AVHRR & TRMM/VIRS
- 3) MULTI-SPECTRAL IMPROVEMENTS

Cloud Screening

MODIS (Ref?):

Done by MODIS Team

VIRS-like (Minnis et al):

Consistent w/ TRMM/VIRS

Sampling

MODIS: Beyond 40° glint

VIRS-like: Beyond 40° glint & Anti-solar side of Orbit

Aerosol Retrievals

MODIS (Tanre et al. 1997)

Spectral: 6 bands from 0.55-2.13 μm

• Aerosol: Var Bi-LogNormal (Mode Location/Ratio)

• Surface: Fresnel (V=7 m/s) + Black (except 0.55 μm)

RT Model: Ahmad-Fraser (JAS 1981)

VIRS-like (Ignatov Stowe 2000, 2002)

Spectral: Single-Channel: 0.659 & 1.640 μm

• Aerosol: Prescribed (Fixed) Mono-LogNormal

Surface: Fresnel (V=1 m/s) + Small Diff.Ref.

• RT Model: Vermote et al. 6S (IEEE/TGARS 1997)

VIRS-like ↑	DEC 15-21 2000 FM1	DEC 15-21 2000 FM2	JUN 1-7 2001 FM 1	JUN 1-7 2001 FM2
	14%	14%	4%	5%
	42%	47%	43 %	47%
	44%	39%	53%	48%
MODIS	M⊕V=100% N=2,268,474	M⊕V=100% N=2,217,566	M⊕V=100% N=2,652,508	M⊕V=100% N=2,542,214

τ-RETRIEVALS

- VIRS MODIS $(\delta_{t_1} \sim 0.004; \delta_{t_2} \sim 0.003)$
 - Lat/Lon Domain: Identical
 - Sun/View/Scatter/Glint: Identical
 - Cloud Condition/Sampling: Close
 - Aerosol Algorithm: DIFFER
- VIRS VIRS $(\delta_{t_1} \sim 0.01; \delta_{t_2} \sim 0.002)$
 - Lat/Lon Domain: DIFFER?
 - Cloud Condition: DIFFER?
 - Sun/View/Scatter/Glint: DIFFER?
 - Aerosol Algorithm: Identical
- MODIS MODIS $(\delta_{\tau_1} \sim 0.03; \delta_{\tau_2} \sim 0.03)$
 - Lat/Lon Domain: DIFFER?
 - Cloud Condition: DIFFER?
 - Sun/View/Scatter/Glint: DIFFER?
 - Aerosol Algorithm: Identical

CLOUD AMOUNT

SCATTER ANGLE

CONCLUSION TO MODIS

Cloud/Sampling

VIRS-like NO MODIS: ~10%

VIRS-like AND MODIS: ~45%

MODIS NO VIRS-like: ~45%

τ-Retrievals:

VIRS-like compares to MODIS

(Aerosol algorithm: Effect Small)

MODIS differ from MODIS

(Cloud/Scat Angle Differ)

Paper to JAS-2003 in preparation

TRMM/VIRS AEROSOLS

AVHRR: $\lambda_1 = 0.63 \, \mu \text{m}$ $\lambda_2 = 0.83 \, \mu \text{m}$ $(\lambda_{3A} = 1.61 \, \mu \text{m})$

NOAA: 1981-pr; $70^{\circ}\text{S}-70^{\circ}\text{N}$; $\sim 1:30 \text{ pm}$; H=870 km; 9

lays

VIRS: $\lambda_1 = 0.63 \mu \text{m}$ $\lambda_2 = 1.61 \mu \text{m}$

TRMM: 1997-pr; 40°S-40°N; full day; H=350 km; 45 day

Cloud Screening: Accurate / Different

Ignatov Stowe JAS 2002:

τ₁: 6S-based (Vermote et al. *IEEE* 1997) single-channel (scaled to 0.63 μm)

Atmosphere

Aerosol: Log-Normal R_m=0.1 μm, σ=2.03; n=1.4-0*i* (Empirical Phase Function; Ignatov *JAM* 1997)

Rayleigh/Gas: Mid-Latitude Summer

Surface

Lambertian: $\rho_{\rm sfc}$ =0.002 (0.2%)

Bi-directional: Cox-Munk V=1 ms-1

Why Single-Channel?

$$\rho = \frac{\pi L}{F \mu_S}; \qquad \rho = \frac{\mathbf{P}^R(\chi) \, \tau^R}{4 \, \mu_S \, \mu_V} + \frac{\boldsymbol{\omega}_O \, \mathbf{P}^A(\chi) \, \tau}{4 \, \mu_S \, \mu_V}$$

Single-Channel: τ

• ω₀P^A: fixed globally non-variable (average aerosol type $\pm 30\%$)

Two-Channel: (τ, α) (Def: $\tau(\lambda) = \tau_0 \times \lambda^{-\alpha}$)

 ω₀P^A: adjusted coherently with retrieved α (as accurate as α)

Information Content/Signal-To-Noise Ratio: η=σ_∞/σ_α (Westwater Strand JAS 1968; Rogers RGSP 1976)

- $\sigma_{\alpha} \sim 0.3$; $\sigma_{\alpha} \sim k/\tau$ (Ignatov et al. ASR 1997; Ignatov Stowe JAS 2002)
- η=τ/τ₀; η~1 at τ~τ₀

- AVHRR/AEROBS (8 km)² T_o~0.18 (Ignatov Stowe JAS 2002)
- AVHRR/PATMOS (110 km)² $\tau_{o} \sim 0.11$ (Ignatov Nalli JTech 2002)
- TRMM/VIRS $(>10 \text{ km})^2 \tau_a \sim ?$ (Thermal Leak)

LATITUDE

- Minimum
- VIRS noisier (drop-outs)
- Min(VIRS) ~ min(AVHRR): No Cal Error?
- Average
- AVHRR-AVHRR: + Anomaly Apr98 (0-20°S)
- VIRS: anomaly exaggerated

CLOUD AMOUNT

• VIRS: ~15%

• AVHRR: ~40%

- Average
- reproducible pattern for 2 datasets
- increasing trend with cloud amount
- Minimum
- Increasing trend (residual cloud?)

 τ_1 0.63 µm: Biased w/t to AVHRR by ~+0.04

τ₂ 1.61 μm: Bad (thermal leak). Recommend against using.

 α Bad (thermal leak in τ_2).

Paper to JAM-2003 in preparation